- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
01
- Author / Contributor
- Filter by Author / Creator
-
-
Anasori, Babak (1)
-
Esteban, Cotty_D Quiroz (1)
-
Grez, Jorge Ramos (1)
-
Marian, Max (1)
-
Patenaude, Jacob (1)
-
Ramteke, Sangharatna M (1)
-
Rosenkranz, Andreas (1)
-
Wright, Bethany G (1)
-
Wyatt, Brian C (1)
-
Zambrano, Dario F (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Synovial joints, critical for limb biomechanics, rely on sophisticated lubrication systems to minimize wear. Disruptions, whether from injury or disease, often necessitate joint replacements. While additive manufacturing offers personalized implants, ensuring wear resistance remains a challenge. This study delves into the potential of Ti3C2Tx and Mo2TiC2Tx nanosheets in mitigating wear of additively manufactured cobalt-chromium tungsten alloy substrates when incorporated as additives into synovial fluid. The colloidal solutions demonstrate an excellent stability, a crucial factor for reproducible assays and potential clinical applicability. Analysis of contact angles and surface tensions reveals MXene-induced alterations in substrate wettability, while maintaining their general hydrophilic character. Viscosity analysis indicates that MXene addition reduces the dynamic viscosity, particularly at higher concentrations above 5 mg/mL, thus enhancing dispersion and lubrication properties. Friction and wear tests demonstrate a dependency on the MXene concentration, while Ti3C2Tx exhibits stable friction coefficients and up to 77 % wear reduction at 5 mg/mL, which was attributed to the formation of a wear-protecting tribo-film (amorphous carbon and MXene nano-sheets). Our findings suggest that Ti3C2Tx, when supplied in favorable concentrations, holds promise for reducing wear in biotribological applications, offering avenues for future research into optimizing MXene utilization in load-bearing joint replacements and other biomedical devices.more » « lessFree, publicly-accessible full text available December 1, 2025
An official website of the United States government
